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Abstract

In this paper, we describe the integration of dynamic
right-sizing — an automatic and scalable buffer man-
agement technique for enhancing TCP performance
— into GridFTP, a subsystem of the Globus Toolkit
for managing bulk data transfers across computa-
tional grids. Such grids are often characterized by
networks with large bandwidth-delay products. Unfor-
tunately, many of today’s grid applications use only a
small fraction of available bandwidth because the de-
fault buffer sizes in TCP are tuned for yesterday’s
WAN speeds. Buffer sizes can be manually tuned to
allow TCP flow control to adapt to high-speed WAN
environments, but this is a tedious process. Although
recent work has shown how to automatically tune sys-
tem buffers during connection set-up, these values
may not be appropriate for the connection’s lifetime
due to varying network delay and throughput.

We show how using the technique of dynamic right-
sizing (DRS) in GridFTP helps us optimize memory
usage while maintaining high throughput over the life-
time of the connection. We also show how DRS en-
hances important GridFTP features such as striped
and third-party data transfers in a scalable way. The
technique is implemented entirely in user space so that
end users do not have to modify the kernel.
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1 Introduction

GridFTP [1] is a protocol extension to FTP [14]
and its existing extensions [2, 8, 9] to manage

large data transfers across computational grids [4].
GridFTP adds useful new features to the FTP spec-
ification that include secure transfers, third-party
managed transfers, parallel and striped data trans-
fers (where data is partitioned across multiple nodes)
and partial file transfers among others. Presently,
these have been implemented as part of the GridFTP
module of the Globus Toolkitv2.0 [6]. The term
“GridFTP” is used to refer to the protocol and the
GridFTP family of tools that are distributed with the
Globus Toolkit e.g., the GridFTP server, client tools
and the client and control libraries.

GridFTP relies on TCP, the most widely used
transport protocols for the Internet as well as com-
putational grids. Such grids are often characterized
by networks with large bandwidth-delay products
(BDP). Currently, however, the default flow-control
parameters in TCP are statically tuned to suit net-
works with small BDPs, and thus perform abysmally
over today’s grid networks with large BDPs.

Tuning of buffer sizes is necessary for maximiz-
ing throughput with TCP. For any given connection,
the optimal TCP buffer size is equal to the BDP
of the connection. Often, grid researchers manu-
ally tune the buffer sizes to keep the network pipe
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full [13, 16] by using diagnostic tools to determine the
round-trip time (RTT) and bandwidth of the connec-
tions. Such tools include iperf [18], nettimer [10]
and nettest [11] among others. Because all these
tools require a certain level of expertise to install and
use, they are often not used by application end users.

Several services have been proposed to simplify
this manual tuning process, e.g., AutoNcFTP [12]
and Enable [17]. However, these tools only measure
network characteristics at connection set-up time. As
we shall see in section 2, the BDP of a connection
can fluctuate enormously during the lifetime of the
connection. Thus, this method may oftentimes end
up either over-provisioning or under-allocating buffer
space.

A more desirable approach would be to dynam-
ically tune the buffers over the lifetime of the con-
nection. There are two proposed implementations
for this at the kernel level: auto-tuning [15] and dy-
namic right-sizing (DRS) [3]. The former implements
sender-based, flow-control adaptation while the latter
implements receiver-based, flow control adaptation.
DRS in the kernel exhibits throughout speed-ups of
up to eight over a typical WAN grid running stock
TCP [3]. However, achieving such performance re-
quires a DRS kernel patch for every pair of commu-
nicating hosts in the grid.1

DRS has also been implemented in user space [5],
where it has been integrated into the Linux FTP
client and the popular wu-ftpd [20] FTP server ap-
plications. While this is a coarser-grained implemen-
tation, it is more portable and remains transparent to
the end user. The BDP of the network is continually
monitored throughout the lifetime of the connection,
and the buffers are dynamically tuned based on the
estimated BDP. This has resulted in better adapta-
tion and overall performance gain.

The GridFTP specification also has provisions for
automatic buffer-size tuning [1], although this has
been an unimplemented feature. In this paper, we
shall describe the results of integrating DRS into the
GridFTP control libraries. We show how GridFTP
with DRS performs on par with statically tuned over-
provisioned buffer sizes, but at a fraction of the mem-
ory cost. Further, the technique works with all of
GridFTP’s important data transfer features such as
third-party data transfers and striped transfers. Con-
sidering the advantages, we believe that this is an
important enhancement to the GridFTP framework.

1We note that DRS is fully compatible with stock TCP.
Even if only one end host is DRS enabled, the connection will
still work properly but without the performance benefits.

The rest of the paper is organized as follows. In
section 2, we briefly discuss the GridFTP protocol
and the motivation for integrating DRS into it. Sec-
tion 3 briefly discusses the GridFTP structure and the
design considerations for enabling DRS in GridFTP.
In section 4, we discuss the implementation details of
the DRS technique. Section 5 discusses the experi-
mental results and the performance of GridFTP with
and without DRS. Finally we conclude in section 6
with a brief discussion of the overall benefits of inte-
grating DRS into GridFTP and avenues for further
research.

2 Background

GridFTP is a set of extensions to the ubiquitous
FTP protocol that facilitates reliable, secure and effi-
cient bulk data transfers across computational grids.
The original FTP protocol [14] and its existing ex-
tensions [2, 8, 9] are used as the base. The GridFTP
specification [1] has additional features that include:

• Support for secure transfers (Grid Security In-
frastructure).

• Parallel data transfers — where the data may
be transferred in parallel streams between two
nodes.

• Striped data transfers — where the data may be
transferred to multiple nodes (stripes).

• Partial file transfers.

• Third-party control of data transfer.

• Automatic negotiation of TCP buffer sizes.

GridFTP is distributed as part of the Globus Toolkit
and consists of a set of client and control libraries and
associated Application Program Interfaces (APIs).
The GridFTP server consists of a modified version
of the wu-ftpd [20] server that supports most of the
GridFTP protocol extensions. The client and server
modules access a common set of libraries to manage
the data and control connections of an FTP session.
Section 3 has a more detailed discussion on the struc-
ture of GridFTP.

One of the unimplemented features in GridFTP
has been the automatic negotiation of TCP buffer
sizes. The key to maximizing transfer rate of
TCP connections over high bandwidth-delay prod-
uct (BDP) networks is to ensure that the connec-
tion throughput is not artificially limited by its flow-
control window. To fully utilize available bandwidth
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Figure 1. Variation of Bandwidth-Delay Prod-
uct at 20-Second Intervals

and keep the network pipe full, the TCP buffers
should be set at least as large as the BDP. Histor-
ically, a statically tuned flow-control window, fwnd,
set to small default values sufficed for all communi-
cations since the BDP of networks was small. How-
ever, today’s grid networks are characterized by large
BDPs, and thus a small value for fwnd leads to gross
under-utilization of available bandwidth. Most oper-
ating systems today set the default fwnd size to ∼
64 KB — the maximum window size available with-
out scaling. Yet BDPs range between a few bytes (56
Kbps × 5 ms = 36 bytes) and a few megabytes (622
Mbps × 100 ms = 7.8 MB). For the former case, the
system wastes over 99% of its allocated memory(i.e.,
36B/64KB = 0.05%). In the latter case, the system
potentially wastes up to 99% of the network band-
width (i.e., 64KB/7.8MB = 0.8%). Throughput can
be increased many-fold by statically setting the de-
fault buffer sizes to the estimated BDP of the net-
work. But even this may not be the best approach,
since the BDP of a given connection can wildly fluc-
tuate over its lifetime.

This fluctuation in BDP is illustrated in Figure 1
depicting the variation in the BDP between Los
Alamos National Laboratory and a site in New York,
sampled at 20-second intervals. The bottleneck band-
width averages 17.2 Mbps with a low and a high of
26Kbps and 28.5 Mbps, respectively. The RTT delay
also varies between 119ms and 475ms with an average
delay of 157ms. As a result, the BDP of this connec-
tion varies by as much as 61Mb. Thus, ideally, fwnd
should vary dynamically with the BDP of the con-
nection, thus providing the motivation for dynamic
right-sizing (DRS).

The GridFTP specification has provisions for tun-
ing buffer sizes, manually as well as automatically.
The manual method allows clients to explicitly set
the TCP buffer size for subsequent data connections.
With the automatic method,2 the buffer size is nego-
tiated based on a RTT and bandwidth test at con-
nection set-up time. We shall discuss these in more
detail in section 4.2. The point to note, however,
is that both these methods still represent a one-time
tuning, carried out at connection set-up time, and can
lead to over-allocation of memory or under-usage of
bandwidth as the network conditions change over the
connection’s lifetime. Clearly, the grid community
needs a solution that achieves optimal performance
without wasting bandwidth or memory resources. We
have already integrated the DRS technique into reg-
ular FTP [5], and the promising results combined
with the increasing popularity of GridFTP and the
Globus Toolkit among grid researchers provided us
with enough motivation to apply this technique to
GridFTP.

3 Applying DRS to the GridFTP
Framework

In the following sections, we briefly discuss the
GridFTP framework in the Globus Toolkit and
the design considerations for implementing DRS in
GridFTP.

3.1 The GridFTP Software Framework

The GridFTP implementation in the Globus
Toolkit consists of a family of tools — the GridFTP
server, client program, client library and the control
libraries that manage the data and control connec-
tions of an FTP session.

Below, we briefly describe the main GridFTP mod-
ules that are of interest to us:

• globus-url-copy: This is the GridFTP client tool
provided with the Globus Toolkit, which works
with multiple protocols (http, https, ftp, gsiftp3).
It takes a source URL and a destination URL as
the arguments. The number of parallel streams
can be specified as an optional argument.

• globus-gass-copy: The globus-url-copy is a simple
wrapper around the globus-gass-copy program.4

2Unimplemented in the current GridFTP version as of the
writing of this paper

3FTP with support for Grid Security Infrastructure.
4GASS is Globus Access to Secondary Storage.



This consists of an API for copying data from
a source to a destination, specified by URLs.
The protocols supported are http, https, ftp and
gsiftp.

• globus-ftp-client: This is the FTP client library
that supports standard FTP commands such as
get, put etc. as well as the GridFTP extensions
such as third-party-transfer.

• globus-ftp-control: This is the low level GridFTP
driver, consisting of a set of libraries that handle
the control and data channel management. The
data channel management is symmetric for client
and server sides, i.e, both client and server access
a common set of functions for data transfer.

• GridFTP Server: This is a “globussified” version
of the wu-ftpd server. GridFTP control and
data channel management functions are invoked
from within the main server module.

globus−url−copy

globus_gass_copy

globus_ftp_control

globus_ftp_client
GridFTP Server 

(modified wu−ftpd)

DRS Code

Figure 2. GridFTP Layout

To add DRS functionality to the GridFTP frame-
work, most of the significant changes were made to
the globus-ftp-control libraries. Figure 2 gives a
general idea about the dependencies and interactions
between the various modules described above. Note
that the Globus Toolkit is a considerably complex
piece of software. A detailed discussion of all the rel-
evant modules is outside the scope of this paper, and
the interested reader is referred to [6].

3.2 Data Transfer in GridFTP

The GridFTP protocol specifies two modes of data
transfer:

• Stream Mode or Mode S is defined in the original
FTP RFC [14]. Data is represented as a stream
of bytes. There are no advanced features in this
mode, except simple restart.

• Extended Block Mode or Mode E, which is an ex-
tension of the Block mode specified in [14]. Mode
E supports advanced features such as 64-bit off-
set and length fields to the header, discontigu-
ous, out-of-order transmission and also enables
parallelism and striping.

DRS has been implemented in the extended block
mode and is currently unavailable in stream mode.
This approach allowed us the maximum room for ma-
neuverability without significantly affecting the exist-
ing framework. Similar to the other advanced data
transfer features in GridFTP (which are also unavail-
able in stream mode), specifying the DRS option
forces the data transfer to take place in extended
block mode. Figure 3 shows the structure of the
extended-block header. Of particular interest to us
is the eight-bit descriptor field. This field is used to
indicate the type of data that follows — end-of-file,
error-block, restart-marker etc. In section 4.2 we de-
scribe how we can exploit unused descriptor codes for
implementing the DRS algorithm.

Descriptor
8 bits 64 bits

Byte Count Offset Count
64 bits

Figure 3. Extended Block Header

4 Implementing DRS in GridFTP

The DRS technique was originally implemented in
the Linux protocol stack [3]. In order to maximize the
transfer rate, DRS in kernel space tries to set the flow-
control window of a TCP connection to be larger than
the congestion-control window, thus ensuring that the
connection is not artificially flow-control limited. It
does this by inferring the instantaneous bandwidth
and uses this value and the estimated round-trip time
to calculate the BDP.

The DRS technique has been successfully extended
to user space via the Linux FTP client and the



wu-ftpd FTP server [5]. The main difficulty in ex-
tending DRS into a user-space implementation is that
unlike the kernel, an application (e.g., an FTP client)
does not have direct access to the state of the TCP
stack. Thus, any DRS implementation in the appli-
cation layer must rely on coarse-grained, user-space
measurements rather than on fine-grained TCP con-
nection state.

Bandwidth measurements are made by sampling
the throughput at periodic intervals at the receiver
end. To determine the round-trip delay, the FTP
client sends a small packet periodically on the FTP
control channel for the sender to echo back. The RTT
is estimated by computing the difference between the
sending and receiving times. The additional load on
the network as the result of the RTT probe packets is
generally small and depends on the sampling interval.

Note that in the above method, the RTT probes
are sent on the control channel. Thus one of the im-
plicit assumptions here is that the path delay on the
control channel is the same as that of the data chan-
nel, i.e., essentially the control and data paths are as-
sumed to follow the same route. This is not generally
true in the case of third-party transfers, whereby the
control commands may be sent on an entirely differ-
ent path from the actual data-transfer path. Third-
party transfers are an important feature of GridFTP;
thus a different approach was needed to estimate RTT
(described in section 4.2). Below we present the im-
plementation details of DRS in GridFTP.

4.1 Determining Instantaneous Bandwidth

We know that the sender always has data to send
throughout the lifetime of the FTP data connection.
Thus, the sender will send as much data as possible,
constrained by its idea of the congestion window or
size of the receiver flow-control window (whichever
is smaller). Further, data is received at the receiver
end as quickly as current network conditions allow.
Thus, the available bandwidth can be estimated by
periodically computing the bytes received by the time
taken to receive them.

The sampling interval needs to be chosen care-
fully. A sampling interval that is too short leads to
increased overhead and reduces performance. Con-
versely, a long sampling interval leads to sluggish per-
formance since DRS will not be able to set the buffer
sizes quickly enough to adapt to changing network
conditions.

Ideally, the sampling rate should be related to the
round-trip time. However, for the current imple-
mentation we chose a fixed sampling time of 500ms,

which is several times greater than cross-country
RTTs. This value represents a fair compromise be-
tween overhead and adequate responsiveness. Dy-
namically varying the sampling time according to
varying network delays is one of the modifications we
propose to add in the future.

4.2 Determining RTT

The RTT of a data connection cannot usually be
inferred from user space without injecting extra traf-
fic into the network. This is because user-space code
does not have access to the state variables in the
TCP-stack, and hence cannot know when a packet
was sent and its acknowledgement received. We
shortly describe how we can circumvent this problem
by using the advanced features of Mode E.

As mentioned earlier, in drsFTP, RTT was esti-
mated by periodically sending small packets on the
control channel, which the sender then echoes back.
These packets served the dual purposed of carrying
buffer-size information from receiver to sender5 as
well as being a vehicle for RTT estimation. This was
based on the assumption that the control and data
channels took the same path. As noted earlier, how-
ever, this technique will not work in GridFTP dur-
ing third-party data transfers or for striped transfers
(where multiple data connections are present).

The GridFTP specification has added two com-
mands to the control channel protocol for setting
TCP buffer sizes. Of particular interest to us is the
SBUF command. This extension adds the capability
for a client to explicitly set the TCP buffer size on
the server for subsequent data connections.6

Syntax:
SBUF <SP> <buffer-size>

buffer-size ::= <number>

As mentioned in section 3.2, the DRS technique
in GridFTP is implemented in the extended-block
(Mode E) data transfer mode. Recall from section 3.2
that the Mode E header (ref. Figure 3) contains
unused descriptor codes in the eight-bit descriptor
field. For the purposes of estimation of RTT, we
make use of the semantics of the SBUF command, but

5Sender’s window should adjust in step with receiver’s win-
dow in order to take full advantage of dynamically changing
buffer sizes

6The second one is the ABUF command which enables
clients to automatically set buffer-sizes based on a bandwidth
and RTT test at connection set-up time. However, this is an
unimplemented feature in the current version of GridFTP.



Byte CountDescriptor = 02

= <bufsize>

Offset Count

(Unused)

Figure 4. SBUF Message encapsulated in a
Mode E Header.

encode it in a Mode E header and send it over the
data channel. For this purpose, we define two new
descriptor codes, making use of two unallocated bits
in the descriptor field.

Descriptor Code Meaning

02 Encoded SBUF message

01 Reply to SBUF message

Note that the SBUF messages are sent as in-band
data, i.e., they are sent and received on the same data
connection as the actual file transfer. This approach
allows us to estimate RTT over the data channel it-
self.

Upon expiration of an alarm, the receiver sends a
Mode E header (without any payload) to the sender.
The descriptor field in the header is set to 02 (encoded
SBUF) while the <byte-count> field is set to the value
of the receiver’s current buffer-size (Figure 4).

When the sender receives this packet on the data
channel, it interprets this as an SBUF command using
the descriptor code and tries to set its send-buffers to
the value contained in the <byte-count> field. Also,
an acknowledgement is sent by setting the descriptor
code to 01 in the descriptor field of the next outgoing
EB header.7 When the client receives a header with
the SBUF reply bit set, it calculates the RTT based on
the reception time and the time the SBUF was origi-
nally sent. By using these SBUF messages as carriers
for buffer-size information as well as a vehicle for RTT
estimation, we eliminate the need for separate RTT
probes.

Note that this method requires the data channel
to be bidirectional during a data transfer, i.e., full-
duplex communication must be supported over the
data channel. This is a modification to the FTP spec-
ification as well as to the current GridFTP implemen-
tation. Bidirectional data transfers are not presently
implemented in the Globus distribution of GridFTP.
To enable DRS, we had to engineer bidirectionality
into the library modules of GridFTP. Remember that
the SBUF messages and its responses are sent over the

7Note that this is similar to the way TCP piggy-backs ac-
knowledgements.
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GridFTP Client

Control
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Control
Channel

Encoded SBUF Messages

Direction of Data Transfer

(In−band Data) 

Figure 5. Data Transfer Dynamics During a
Third-Party Transfer.

existing TCP data connection and not over another
connection going the opposite way. Thus this method
will work even in the presence of firewalls (note that
TCP itself is a bidirectional protocol over a single
connection).

In drsFTP, the RTT estimates were made over
the control channel. Thus for parallel transfers, we
would need a control channel for each data connec-
tion (assuming they took the same route) — imped-
ing the scalability of such an implementation. More-
over, third-party transfers could not be supported in
this way. However, in GridFTP, by estimating all
the required information i.e., bandwidth and RTT,
over the data channel(s), we eliminate the need for
any control channel information for DRS. Therefore,
the DRS algorithm can be implemented between any
two pair of communicating hosts involved in a data
transfer. Thus, support for third-party transfers and
parallel/striped transfers is implicit in this implemen-
tation.

Figure 5 illustrates a third-party transfer scenario.
The SBUF messages are exchanged as in-band data on
the data channel, parallel to the actual data transfer.
In a two-party scenario, the controlling node itself
would be at one of the ends of the data channel. We
also note that the DRS state information associated
with each data channel is only maintained at the end
points of that particular data channel. In third-party
and striped/parallel transfers, often a single node acts
as the controlling entity that coordinates data trans-
fers over multiple data channels. By implementing
DRS solely over the data channel, we need not main-
tain any state information at the controlling node -
making this a scalable approach.

4.3 Setting Receiver’s Flow-Control Window

Using the estimates for bandwidth and RTT as
described above, the bandwidth-delay product of the
connection is calculated at the receiving end. User-
space applications cannot directly set the flow-control



window in the TCP stack. Instead, the window is set
indirectly by setting the size of TCP receive buffer
to at least twice the calculated value of the BDP.
For this we employ the setsockopt system call that
allows the user to manipulate TCP buffer sizes. The
reason for doubling the receive buffer size is that in
the worst case, the sender is in the slow-start phase
and is doubling its window with every round-trip. It
is difficult to estimate when the sender is out of slow-
start, thus we increase the buffer size by a factor of
two over the estimated BDP.

We note that the DRS technique is TCP-friendly
in the sense that N flows, DRS-enabled or not, will
each receive a long-term average of 1/N-th of the
bandwidth of a fully utilized network. Since the
congestion-control mechanism of TCP governs fair-
ness and because GridFTP with DRS has the same
congestion-control mechanism, it responds to conges-
tion the same way as regular TCP. On an uncongested
network, however, GridFTP with DRS will attempt
to utilize the excess capacity that can exist when all
the other connections are artificially limited by their
flow-control windows. As the network becomes con-
gested again, GridFTP with DRS throttles back and
performs no better (or worse) than a regular TCP
connection.

5 Experiments

We tested the performance of both two-party
and three-party transfers using GridFTP with DRS
against GridFTP with buffer sizes set statically to
OS default values as well as to large values (greater
than the BDP of the connection). The experiments
were run through a WAN emulator that reproduces
delay and loss based on a sample of such data be-
tween Los Alamos National Laboratory and a site in
New York. Each version of GridFTP (drs, stock and
static-optimal) is benchmarked across the WAN em-
ulator.

5.1 Experimental Setup

Figure 6 shows our experimental setup for two-
party transfers. It consists of three identical ma-
chines connected via 100-Mbps Ethernet. Each ma-
chine contains dual 500-MHz Pentium III processors
with 1-GB RAM and a 100-Mbps on-board Intel Net-
work Interface Card (NIC). One machine, contain-
ing another 100-Mbps NIC, acts as a WAN emula-
tor. Each of its two NICs are connected to one of
the other machines via hard-coded forwarding tables

GridFTP Server WAN Emulator
eth0 eth0 eth1 eth0

GridFTP Client

Figure 6. Experimental Setup for Two-Party
Data Transfer

in the switch. The WAN emulator, implemented us-
ing TICKET [19] technology, forwards packets at line
rate and has user-settable delay and drop probability.
All traffic, both data and control, occurs through the
WAN emulator. For testing parallel transfer, we start
multiple data streams between the client and server
machines. The number of parallel streams is specified
as an option to the globus-url-copy program.

5.2 Experimental Method

For each version of GridFTP, we transfer a set of
files ranging from 1 MB to 512 MB over the emulated
WAN. For the GridFTP runs with OS-default buffers,
we used buffers of 64 KB (the default under most
modern operating systems). For both the OS-default
and over-provisioned cases, we run GridFTP (with-
out DRS) in regular stream mode (with one stream)
as well as extended-block mode with one, two and
four parallel streams. We then run GridFTP with
DRS enabled for the same configuration, allowing the
buffer sizes to vary in response to changing network
conditions.

5.3 Results

We present a few results from our initial experi-
ments for both two-party and three-party transfers.
In the following results, the average round-trip time is
102.1 ms, and the DRS sampling interval is set to 500
ms. For the statically tuned, over-provisioned case,
we use static buffer-sizes of 8 MB (which is greater
than the bandwidth-delay product of 1.2 MB).

5.3.1 Two-Party Transfers

Figure 7 shows the performance of GridFTP (with-
out DRS) with default buffer sizes (64K) in stream
modes as well as Mode E with one, two and four par-
allel streams. The average transfer rate with four
parallel streams (20 Mbps) is about four times faster
than that with one stream (5 Mbps). Figure 8 shows
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Figure 8. Performance of GridFTP with Stat-
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the results for the same file transfer sizes but with
buffer size statically set to 8 MB. The maximum
transfer rate goes up to 80 Mbps with four paral-
lel streams, a four-fold improvement over the corre-
sponding transfer rate with stock buffer sizes. Next
we run the same set of tests but with DRS turned
on. From Figure 9 we see that GridFTP with DRS
performs as well as GridFTP with statically tuned
over-provisioned buffers. Furthermore, the improve-
ment over GridFTP with stock buffer sizes is four-
fold. Buffer-sizes were observed to range from a pal-
try 700 KB to 3.5 MB. The reader may observe that
buffer-sizes grow to values that are larger than the
theoretical BDP of our setup (1.2 MB). There are two
reasons for this — first, recall that we set the buffer
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Figure 10. Buffer Usage Efficiency: Band-
width Achieved per MB of Buffer

sizes to twice the observed BDP to allow for the slow-
start phase, where the sender may be doubling its
window every round-trip time. Second, the coarse-
grained, user-space timer tends to over-estimate the
RTT up to a factor of 1.5. This is because the esti-
mates are actually the end-to-end delay between the
two application layers (including protocol stack over-
head), and not the actual network path delay. These
two factors combined result in a small amount of over-
provisioning of buffers.

Figure 10 illustrates the efficiency of buffer us-
age by measuring the bandwidth achieved per MB
of buffer allocated. We see that for a file size of
16 MB, DRS is able to achieve a throughput of al-
most 19 Mbps/MB as opposed to 5 Mbps/MB for



the statically tuned, over-provisioned case. Thus the
efficiency factor for DRS is greater by as much as a
factor of four over the static configuration. As the
transfer size (and thus transfer time) increases, effi-
ciency picks up for over-provisioned GridFTP but it
still remains well below that of DRS.

5.3.2 Third-Party Transfers

Figure 11 illustrates our experimental setup for
third-party transfers. In this scenario, the data
transfer takes place between two GridFTP servers,
connected through the WAN emulator. The con-
trolling node is the GridFTP client, which has
low-latency, control-connections to either server. To
initiate a third-party data transfer, the controlling
node first establishes a control-channel connection
with the receiving host (GridFTP server B in this
case). The client then sends a PASV command
on the control channel to the receiving host. This
instructs the server to listen on a data port and to
wait for a connection rather than initiate one upon
receipt of a transfer command. The response to this
command is of the form (host,port) which contains
the host and port address that this server will listen
on. The client then sends a PORT command on the
control channel to the sending host (GridFTP server
A). This command is of the form

PORT host-address,host-port

The host address and port values are those that
were returned by the receiving host in response to
the PASV command. The PORT command instructs
the sending server to use these values for the data
connection. Figures 12 to 14 show the corresponding
performance results in the third-party transfer
scenario. As we can see, the performance is very
similar to the two-party results discussed in the
previous section. This is to be expected since DRS
dynamics are implemented entirely over the data
connection. The presence of a third-party controlling
node will not affect the performance to any signifi-
cant degree. Thus, implementing the DRS technique
via in-band data messages over the data connection
allows us to extend the performance benefits of DRS
to third-party transfers - an important feature of
GridFTP.

6 Conclusion

In this paper, we presented the results of integrat-
ing dynamic right-sizing into the GridFTP implemen-

GridFTP Server A WAN Emulator GridFTP Server B

Data Channel Data Channel

Control Channel Control Channel

GridFTP Client
(Controlling Node)

eth0 eth0 eth1 eth0

Figure 11. Experimental Setup for Third-
Party Data Transfer
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tation of the Globus Toolkit. We were motivated by
the performance results obtained by integrating DRS
into regular FTP. We showed how the implementa-
tion implicitly supports important GridFTP features
like third-party, parallel and striped transfers in a
scalable way. Future work will include performance
results of DRS “in the wild” — GridFTP with DRS
over a real-world WAN.

A requirement for our implementation was that the
data connection needed to be bidirectional, in order
to permit encoded SBUF messages to be sent for RTT
estimation. However, one of the current limitations
in the Globus Toolkit implementation of GridFTP is
the lack of bidirectionality in the data channel, i.e.,
the data connection and data flow are required to be
in the same direction.8 To enable DRS, we engineered
bidirectionality into the GridFTP implementation.

GridFTP uses parallel streams to achieve very
high transfer rates. GridFTP with DRS and par-
allel streams is able to achieve the same throughput
at a fraction of the memory cost - a highly beneficial
aspect to the grid community. Furthermore, due to
the static nature by which buffers are set for regular
(non-DRS) GridFTP, i.e., once during connection set-
up, a connection can be unnecessarily throttled due
to a bad BDP sample. GridFTP with DRS simply
adapts automatically over the lifetime of the connec-
tion to simultaneously ensure high throughput and
low memory usage. By integrating the efficiency of
DRS into GridFTP, we believe we have combined the
best of both approaches.

8This is not a restriction of the standard FTP protocol.
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